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Abstract

The use of probabilistic models based on copulas in Estimation of Distribution Al-
gorithms (EDAs) has been identi�ed as an emerging research trend on these algorithms
for continuous domains. By using copulas, the e�ect of the dependence structure and
the margins in a joint distribution can be represented separately. Consequently, EDAs
based on copulas inherit these characteristics and are able to build �exible search dis-
tributions. This paper presents a survey of the EDAs based on copulas that have been
proposed in the literature between 2007 and 2012. We also identify di�erent aspects
that, in our opinion, should be considered in order to attain a deeper understanding of
EDAs based on copulas.

1 Introduction

Estimation of Distribution Algorithms (EDAs) [44, 51] are evolutionary optimization meth-
ods characterized by the explicit use of probabilistic models. These algorithms explore the
search space by iteratively estimating and sampling a probability distribution (search dis-
tribution) built from promising solutions. In the recent years, several EDAs that build the
search distributions through probabilistic models based on copulas have been proposed in
the literature. As evidence of this increasing popularity, the use of copulas in EDAs has been
identi�ed as an emerging approach for the solution of real-valued optimization problems [34].

The use of copula-based models in continuous EDAs places these algorithms in an advan-
tageous position in comparison with other EDAs that rely on the assumption of a particular
multivariate distribution, such as the multivariate normal distribution. By means of copu-
las [39, 52], any multivariate distribution can be decomposed into the marginal distributions
and a copula that determines the dependence structure between the variables. Moreover, by
means of copula-based factorizations, it is possible to construct multivariate distributions
that combine a rich variety of dependence patterns and it also provide us with a poten-
tial mechanism to tackle the curse of dimensionality. EDAs based on copulas inherit these
characteristics and are able to build �exible search distributions.

The papers is organized as follow. Section 2 gives an overview on di�erent aspects of
copula theory that are relevant to this work. Section 3 presents the general procedure of
an EDA, while a description of the copula-based EDAs that have been proposed in the
literature is presented in Section 4. Finally, Section 5 gives the conclusions.
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2 Overview on Copula Theory

The notion of copulas separates the e�ect of the dependence structure and the margins in a
joint distribution. This de�nition is supported by Sklar's Theorem [63, 64], which is de�ned
as follows. Let X = (X1, . . . , Xn) be a vector of continuous random variables with joint
density function f and joint cumulative distribution function F , both de�ned on Rn. Also
let x = (x1, . . . , xn) be an observation of X and F1, . . . , Fn denote the cumulative univariate
margins of F . Sklar's Theorem states that the copula C : [0, 1]

n → [0, 1] associated with F
is a distribution function with uniform margins that satis�es

F (x1, . . . , xn) = C (F (x1) , . . . , F (xn)) ,

and consequently,

C (u1, . . . , un) = F
(
F

(−1)
1 (u1) , . . . , F (−1)

n (un)
)
, (1)

where F (−1)
1 , . . . , F

(−1)
n denote the pseudo-inverses of the margins F1, . . . , Fn. If F is con-

tinuous then the copula C (u1, . . . , un) is unique.
A wide range copula families have been presented in the literature, being popular choices

among practitioners the members of the elliptical and Archimedean families. Elliptical
copulas are obtained from elliptical distributions, such as the normal and t distributions, by
using (1). The multivariate t and normal copulas are obtained in this way and they allow
the construction of multivariate distributions with di�erent margins, but preserving the
multivariate t or normal dependence structure. Archimedean copulas are de�ned in terms
of a function ϕ : (0, 1]→ [0,∞) called generator, which is convex and strictly decreasing with
positive second derivative such that ϕ(1) = 0. A bivariate copula is said to be Archimedean
if it admits the representation

C(u1, u2) = ϕ(ϕ−1(u1) + ϕ−1(u2)), (2)

where ϕ−1 denotes the pseudo-inverse of some Archimedean generator ϕ. This genera-
tor usually depends on a parameter that controls the strength of the dependence between
the variables and di�erent Archimedean copulas are obtained by using di�erent generator
functions. Popular choices include Clayton, Gumbel, Frank, Ali-Mikhail-Haq, and Farlie-
Gumbel-Morgenstern copulas.

The estimation of a copula-based multivariate distribution involves the estimation of both
the copula and the marginal distributions [14, 15]. The process of �tting the parameters
often proceeds in two phases: �rst estimating the parameters of the marginal densities,
and then estimating the parameters of the copula. The estimation of the parameters of the
copula is usually carried out by maximum likelihood [24, 40] or the method of moments [60].
Also, a non-parametric estimation of the copula can be performed through the empirical
copula [19]. Copulas can be simulated through the conditional distribution method [20]
but there also exist algorithms for the simulation speci�c families, such as Archimedean
copulas [49] and normal copulas [65].

For more information on dependence modeling with copulas, and a list of the copula
families available, see the comprehensive books [39, 52]. In the following two sections,
examples of multivariate copulas and dependence models that rely on lower-dimensional
copulas as building blocks are described in more detail.
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2.1 Multivariate Copulas

A consequence of Sklar's Theorem is that random variables are independent if and only if
their underlying copula is the product or independence copula, which is given by

C (u1, . . . , un) = u1. . . . .un.

This means that a multivariate distribution with independent margins can be represented
through the marginal distributions and the product copula. Another important copula is
the multivariate normal copula, which is a member of the family of elliptical copulas and is
de�ned as follows,

C (u1, . . . , un;R) = ΦR

(
Φ−1 (u1) , . . . ,Φ−1 (un)

)
,

where ΦR is the standard multivariate normal distribution function with positive-de�nite
correlation matrix R, and Φ−1 denotes the inverse of the standard univariate normal distri-
bution.

Archimedean copulas, as presented in (2), share many nice properties but most of the
members of this family are only de�ned for two variables. One way of extending bivariate
Archimedean copulas to higher dimensions is by using exchangeable Archimedean copulas
[10, 33] given by

C(u1, . . . , un) = ϕ(ϕ−1(u1) + . . .+ ϕ−1(un)), (3)

where ϕ denotes the generator and ϕ−1 its pseudo-inverse. These copulas usually have only
one parameter that characterize the dependence structure between the variables regardless
of the dimension.

2.2 Copula Factorizations

The use of multivariate copulas to model the dependence structure o�ers several advantages
over the use of a multivariate normal distribution, but it presents some limitations. The
number of tractable copulas when more than two variables are involved is rather limited
and multivariate copulas may not be appropriate when all pairs of variables do not share
the same type of dependence. Another shortcoming is that multivariate extensions, such as
exchangeable Archimedean copulas or the multivariate t copula, have only one parameter
to describe certain aspects of the overall dependence. This situation has motivated the
development of more appropriate multivariate copula-based dependence models. In the rest
of this section, we brie�y describe two of these models, which are based on lower-dimensional
copulas as building blocks: pair-copula constructions and nested Archimedean copulas.

2.2.1 Pair-Copula Constructions

By using pair-copula constructions [1, 8, 9, 38], it is possible to build multivariate dependence
models in terms of bivariate copulas. These models are represented through a graphical
model called vine. A vine on n variables is a set of nested trees T1, . . . , Tn−1, where the
edges of tree Tj are the nodes of the tree Tj+1 with j = 1, . . . , n − 2. C-vines (canonical
vines) and D-vines (drawable vines) are two types of vines, each of which determine a
speci�c decomposition of the multivariate density. In a C-vine, each tree Tj has a unique
root node that is connected to n− j edges. In a D-vine, no node is connected to more than
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two edges. The edges of these trees represent the copulas in the decomposition. Since the
bivariate copulas can belong belong to di�erent families, vines can model a rich variety of
dependences.

The estimation procedures of C-vines and D-vines [1, 36] consist of the following main
steps: the selection of the structure of the vines, and the choice of the bivariate copulas in the
factorization along with the estimation of their parameters. Simulation from vines [7, 8, 43]
can be performed by following the conditional distribution method. For more information
on dependence modeling with vines see [17, 42].

2.2.2 Nested Archimedean Copulas

The construction of exchangeable Archimedean copulas, as de�ned in (3), results in a
very restrictive dependence structure: the distribution is invariant under permutations,
and in many cases the dependence structure is determined by a single scalar parameter.
Nested Archimedean copulas [39] provide an alternative to build more �exible multivariate
Archimedean copulas by using nested generators. At each nesting level, an exchangeable
Archimedean copula that determines the dependence between a group of variables is added
in order to conform the overall structure. This �exibility comes with some restrictions that
most be satis�ed for the resulting multivariate distribution to be a proper copula.

Various models based on di�erent nesting structures has been proposed in the literature
[10]. Among them, the hierarchically nested Archimedean copulas constitute one of the most
�exible models. The parameters of the nested Archimedean copulas may be estimated by
maximum likelihood. However, it is not straightforward to derive a density for all parametric
families, and the calculation of numerical derivatives may be necessary. Simulating from
nested Archimedean copulas is also not simple. A procedure based on Laplace-transforms
method is available [50], but it is not applicable to neither all families of Archimedean
copulas nor all dimensions. Therefore, simulation is usually carried out by using conditional
distribution method, for which it may also necessary to calculate numerical derivatives. For
more information on nested Archimedean copulas see [37].

3 Estimation of Distribution Algorithms

EDAs explore the search space by iteratively estimating and sampling a probability distribu-
tion built from promising solutions. The basic steps of this iterative procedure are outlined
in Algorithm 1. Each repetition of this procedure is de�ned as one generation.

The �rst step of an EDA is to simulate an initial population of solutions, which is
usually generated randomly. The simulated population is scored according to the value of
the objective function and then, a group of promising solutions are selected according to
a selection method (e.g. truncation, tournament). The estimation and simulation (also
called learning and sampling) of the search distributions are essential steps of an EDA.
A probabilistic model of the selected population is built, and then a new population is
generated by sampling the estimated model. This simulated population constitutes the
current population. If elitism is used, a small set of the best points of the previous population
is incorporated into the current population. Finally, the algorithm stops when certain
criteria are satis�ed; for example, to reach a maximum number of function evaluations or a
value of the objective function.

For continuous domains, the normal distribution has been commonly adopted to model
search distributions in EDAs [11, 41]. Nevertheless, this distribution can be inconsistent

4



i← 1
repeat

if i == 1 then
Generate an initial population P1.
Evaluate the solutions in the population P1 using the �tness function.

else

Select a population PSelected
i from Pi−1 according to a selection method.

Estimate a probabilistic model Mi of PSelected
i .

Sample a new population PSampled
i from Mi.

Evaluate the solutions in the population PSampled
i using the �tness function.

Create a population Pi from PSampled
i and Pi−1 if elitism is applied.

end if

i← i+ 1
until Termination criteria are met.

Algorithm 1: General procedure of an EDA.

with the empirical evidence and could lead to the construction of incorrect models. Copula
functions o�er an alternative to construct more �exible distributions since the multivariate
distribution can be decomposed into the margins and a copula that sets the dependence
structure among the variables.

The learning step of copula-based EDAs involve the estimation of both the marginal
distributions and a dependence structure, which is determined by the copula. The marginal
distributions can be modeled by parametric and nonparametric distributions. Once the
margins are determined, the selected population is transformed into uniform variables in
(0, 1) by means of the evaluation of each marginal cumulative distribution function. A
copula-based model of the dependence structure is then estimated from this transformed
population. The sampling step usually starts with the generation of a population of uniform
variables in (0, 1) that resembles the dependence structure described by the copula estimated
in the learning step. Finally, this uniform population is transformed to the domain of the
variables through the evaluation of the inverse of each marginal cumulative distribution
function.

4 Survey of EDAs Based on Copulas

To the best of our knowledge, the technical report [68] and the theses [3, 6] can be considered
as the �rst attempts to incorporate the explicit use of copulas into EDAs. Since then, a
considerable number of EDAs based on copula theory have been proposed in the literature.
Figure 1 shows a time-line of the publications that deal with copula-based EDAs that are
described in this paper. According to the copula model being employed, these algorithms
can be classi�ed into two groups as EDAs based on either multivariate or factorized copulas.
Sections 4.1 and 4.2 provide a description of the algorithms belonging to each group.
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Figure 1: Time-line of publications dealing with EDAs based on copulas.

4.1 EDAs Based on Multivariate Copulas

Among the EDAs based on multivariate copulas, research has focused on the product, normal
and Archimedean copulas. In the following sections, these algorithms are described.

4.1.1 EDAs Based on Product Copula

The Univariate Marginal Distribution Algorithm (UMDA) for continuous variables [45, 46]
assumes a model of independence of marginal distributions. An EDA based on the prod-
uct copula is a generalization of UMDA, which can support di�erent types of marginal
distributions [68].

4.1.2 EDAs Based on the Normal Copula

The Gaussian Copula Estimation of Distribution Algorithm (GCEDA) [3, 67, 68] uses a
multivariate normal copula to model the probabilistic dependence structure of the best
solutions at each generation. Regarding the types of margins, two instances of GCEDA
are presented: one uses normal marginal distributions and the other empirical margins
smoothed with normal kernels. If the marginal distributions are not normal, the correlation
matrix is estimated through the inversion of the non-parametric estimator of Kendall's tau
for each pair of variables. Otherwise, maximum likelihood estimation is used. If the matrix
resulting from the inversion of Kendall's tau is not positive-de�nite, the correction proposed
in [56] is applied.

In [3, 68], GCEDA is compared to UMDA and the Estimation of Multivariate Normal
Algorithm (EMNA) [47] according to their performance in the functions Summation Can-
cellation, Sphere, Ackley and Griewank in 10 and 50 dimensions. Notice that GCEDA is
equivalent to EMNA when all marginal distributions are normal. These algorithms are
compared according to the number of function evaluations required to reach a certain value
of the objective function. Di�erent population sizes are used for each algorithm-function
pair. An empirical procedure is used to select the minimum value of the population size
that guarantees that the algorithm converges 95% of the total number of independent runs.
The goal of the experiments is to show the e�ect of using neither normal or normal kernel
margins under a normal dependence structure when the initial population is sampled sym-
metrically and asymmetrically with respect to the optimum. This issue is studied in more
detail in [67].

Other algorithms, theoretically similar to GCEDA from the copula point of view, are
described in [6] and [22]. The former presents di�erences regarding the estimation of the
marginal distributions and the use of techniques such as variance scaling [31]. The ex-
perimental study presented in [6] includes 20 unimodal and multimodal functions. The
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performance of the EDA presented in [22] is evaluated in one 2-dimensional function and
eight 10-dimensional functions. The population size of 100 individuals is used for all the
test functions.

The paper [76] proposes a multivariate copula to model the search distributions in EDAs,
but only a 2-dimensional EDA based on a bivariate normal copula and normal marginal
distributions is described in detail. The parameter of the normal copula, here a scalar
value, is estimated either by maximum likelihood or using the empirical Pearson correlation
coe�cient. During the simulation step, observations of the bivariate copula are simulated by
conditional sampling and then, the value of each variable in the new population is obtained
through the inverse of the corresponding normal marginal distribution function. Part of
the new population is generated using a mutation operator, but no details are given for its
e�ect. Notice that in this case, since both the bivariate copula and the margins are normal,
the proposed EDA is equivalent to EMNA.

The performance of the proposed algorithm is compared with a continuous extension
of the Population Based Incremental Learning (PBIL) algorithm for continuous domains
[62] in nine 2-dimensional functions with and without the use of the mutation operator.
The termination criteria are to reach the optimum of the function or a maximum of 1000
generations. All algorithms use a population size of 500 individuals for the �rst three
functions and 100 individuals for the rest. The results show that the EDA based on copula
reaches better �tness values than PBIL with a smaller number of function evaluations, in
most of the test functions. Nevertheless, these same results could have been obtained with
EMNA and the advantages of the use of copulas are not therefore clearly illustrated.

In [23], a multivariate normal copula is combined with an opposition-based learning
mechanism [70]. The proposed EDA incorporates opposition-based learning after the gen-
eration of the initial population and after the simulation of the copula-based probabilistic
model. The best solutions of both the new population and its opposite population are
selected to form the population of the new generation. The correlation matrix of the mul-
tivariate normal copula is estimated through the inversion of the non-parametric estimator
of Kendall's tau for each pair of variables. No information is given about the estimation of
the marginal distributions.

The behavior of the proposed algorithm is studied in test functions and a real-world
problem. The benchmark problems are eight functions in 10 dimensions and one bivariate
problem. The real-world problem involves the optimal placement of readers in Radio Fre-
quency Identi�cation (RFID) networks. The proposed algorithm is compared with an EDA
called original version of EDA or standard EDA (no description is given about this algo-
rithm). Both algorithms use the same population size of 50 individuals for all functions and
the maximum number of generations is 500. The paper also claims that the use of opposite
populations improve the convergence performance of the algorithm, but this issue is not
illustrated in the experiments. The paper does not include an experiment that compares
the behavior of the EDA based on the multivariate normal copula with and without the
use of opposition-based learning. Only the results for the algorithm using opposition-based
learning are presented and therefore, it is di�cult to assess the e�ect of this technique in the
optimization. The result presented regarding the optimal placement of readers in RFID net-
works is an optimal solution of a problem instance. It is stated that the proposed algorithm
is e�ective in the placement of readers in RFID networks.
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4.1.3 EDAs Based on Archimedean Copulas

All the EDAs described in this section, except the algorithm presented in [75], are based on
exchangeable Archimedean copulas. These copulas constitute the most common multivariate
generalization of bivariate Archimedean copulas. In this case, the multivariate dependence
structure is determined by a single copula parameter, regardless of the dimension, and all
the variables in the structure are exchangeable.

The paper [75] constitutes a follow up of the EDA presented in [76] that proposes the
use of a bivariate Archimedean copula instead of the bivariate normal copula. Two EDAs
are described: one employs a Clayton copula and the other an Ali-Mikhail-Haq copula. It is
not speci�ed how the parameters of the Archimedean copula are determined. The margins
are modeled with normal, t or empirical distributions. As the EDAs presented in [76], these
algorithms only optimize bivariate functions. The algorithms based on the Clayton and
Ali-Mikhail-Haq copulas are studied in nine bivariate test functions. Both algorithms use a
population size of 100 individuals in all the test functions, and terminate if the optimum is
found or after 1000 evaluations. It is reported that the proposed algorithms perform better
than the EDA presented in [76], which is based on the bivariate normal copula. Nevertheless,
it is not described how the parameters of the Archimedean copulas are determined or how
the margins are modeled.

The paper [21] presents an algorithm called Estimation of Distribution Algorithm with
Laplace Transform Archimedean Copula (EDALTAC), which uses exchangeable Archimedean
copulas and normal kernels for the marginal distributions. The parameters of the generator
of the Archimedean copulas are estimated by maximum likelihood. EDALTAC is compared
to an EDA that the author identi�es as the original Estimation of Distribution Algorithm in
�ve 20-dimensional test functions. In all cases, both algorithms employ the same population
size of 50 individuals and stop if a maximum of 200 generations is reached. The paper states
that EDALTAC uses an Archimedean copula but does not clarify which particular member
of this family is used in the experiments.

On a similar note, the papers [73, 74, 77] present EDAs that model the search distribu-
tions using an exchangeable Archimedean copula with constant parameter (Clayton on the
�rst and third, and Gumbel on the second) and normal or empirical marginal distributions.
The papers [73] and [74] are similar, the Gumbel copula is used in the former and the Clay-
ton copula in the latter. These EDAs are particular cases of the algorithm described in [21],
with the di�erence that the parameters of the generator are �xed.

In the experiments, the algorithms based on copulas are compared to UMDA and MIMIC
for continuous domains, two instances of the Estimation of Gaussian Networks Algorithm
(EGNA) [46], and Evolution Strategies (ES) [4] in Summation Cancellation, Schwefel and
Griewank functions in 10 dimensions. In the �rst paper [77], the parameter of the Clayton
copula is set to 0.1 for the �rst function, and 0.5 for the second and third functions. In the
second paper [73], the parameter of the Gumbel copula is set to 1.5, while in the third paper
[74] the parameter of the Clayton copula is set to 1.0. These values are close to the values
corresponding to independence, which theoretically should make these algorithms achieve
results that are similar to the ones achieved by an algorithm that assumes independence and
uses the same marginal distributions. The paper does not explain why in some cases the
proposed algorithms achieve results that are considerably di�erent from the ones achieved
by UMDA, while their probabilistic models are similar.

Two EDAs based on Clayton and Gumbel exchangeable Archimedean copulas are also
presented in [32]. In both cases, the marginal distributions are normal. For the estimation
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of the parameters of the Clayton and Gumbel copulas, two variables are randomly chosen
and the values of the parameters that maximize the corresponding 2-dimensional marginal
density are selected. It is important to stress out that this method is not a maximum pseudo-
likelihood estimation but an approach based on it. Maximum pseudo-likelihood estimation
involves �nding the values of the parameters that maximize the likelihood function of the
multivariate copula, not the likelihood of an arbitrary 2-dimensional margin.

In the experiments, the proposed EDAs are compared with UMDA and MIMIC for con-
tinuous domains in six 100-dimensional benchmark functions. All algorithms use the same
population size of 100 individuals and the selected population is one-half of the population.
In a glance, a sample of 50 observations seems scarce for the estimation of a probabilistic
model for the dependence structure of 100 variables and the results of the algorithms may
be a�ected by the use of a small population. For instance, the algorithms based on copulas
behave much better than UMDA in Sphere, although it is known that the variables of this
function are independent.

As far as we are concerned, the paper [13] constitutes the �rst attempt to use probabilistic
models based on copulas in the context of parallel EDAs. The proposed algorithm is a
distributed EDA based on the island model [48]. The general idea of the algorithm is to
evolve various subpopulations simultaneously by using a di�erent multivariate copula to
model the individuals of each subpopulation. Speci�cally, the authors study the behavior
of an algorithm that evolves two subpopulations modeled by exchangeable Clayton and
Gumbel copulas. Constant values of 1.00 and 1.05 are assumed for the parameters of the
Clayton and Gumbel copulas, respectively. In both cases, the marginal distributions are
modeled with the empirical marginal distribution.

The performance of the proposed parallel EDA is compared to UMDA and MIMIC
for continuous domains, and the algorithms based on multivariate Clayton and Gumbel
copulas proposed in [73, 74]. The experiments that were carried out are rather limited
and only descriptive comments are given in the analysis of the results. No other parallel
algorithm was included in the comparison and therefore, it is di�cult to asses the e�ect of
the use of probabilistic models based on copulas in the context of parallel EDAs. Also, the
results achieved by the proposed parallel algorithm are similar to the ones obtained by the
sequential algorithms based on multivariate Clayton and Gumbel copulas. We consider the
reason behind this issue is that the dependence structures modeled by each copula is very
similar for the parameter values that were selected. Finally, as commented before in the
case of the numerical results presented in [73, 74], the parallel algorithm achieves results
that are considerably better than the ones achieved by UMDA in the function Summation
Cancellation, but the probabilistic models that are used are not so di�erent. In our opinion,
this issue deserves more study.

4.2 EDAs Based on Copula Factorizations

One alternative to overcome some of the shortcomings of the multivariate copula modeling
approach is to use copula factorizations that build high-dimensional probabilistic models
by using lower-dimensional copulas as building blocks. The algorithms based on copula
factorization reviewed in this paper are divided into three groups: EDAs based on empirical
factorizations, vines and nested Archimedean copulas. The next three sections describe the
algorithms belonging to each group.
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4.2.1 EDAs Based on Empirical Factorizations

The algorithms described in this section use probabilistic models based on copula factor-
izations that are based on either empirical approaches or constitute extensions of existing
algorithms that originally were not based on copulas.

The paper [57] proposes an extension of the Mutual Information Maximization for Input
Clustering (MIMIC) algorithm for continuous domains [45, 46]. Similarly to MIMIC, the
proposed algorithm learns a chain dependence structure but it uses bivariate copulas instead
of bivariate normal distributions. Two instances of this algorithm are presented, one employs
normal copulas and the other Frank copulas. The marginal distributions are beta in both
cases, and consequently, a linear transformation is used to extend the beta distribution o�
the boundaries of the (0, 1) interval. The learning step of the proposed EDA begins with
the calculation of mutual information between all pairs of variables. The values of the
parameters of the copulas obtained by the inversion of Kendall's tau are used as the initial
approximation for the maximum likelihood estimation. Next, a permutation of the variables
that maximizes the sum of the mutual information of the copulas in the corresponding chain
structure is selected. Performing such selection is a computational intensive task and, for
e�ciency reasons, a greedy algorithm originally proposed in [18] and adapted in [45] is used
to compute an approximate solution. During the simulation step, a conditional simulation
approach is followed for the generation of a sample with the relationships described in the
chain dependence structure.

The performance of the two algorithms based on normal and Frank copulas is compared
with the results of MIMIC for continuous domains in �ve test problems: Ackley, Griewank,
Rastrigin, Rosenbrock and Sphere in 10 dimensions. The algorithms use a population size
of 100 individuals and stop after 300000 function evaluations or when the improvement
of the �tness of the best individual in the population is not greater than a threshold for
25 generations. The three algorithms perform similarly on the �ve test problems. In our
opinion, this result is due to the fact that the functions Ackley, Griewank, Rastrigin and
Sphere display weak interactions between the variables, so they can be optimized easily
by UMDA [27, 66, 69]. Therefore, the best performance of these algorithms would be
achieved when the values of copula parameters correspond to the independence model. The
Rosenbrock function presents non-linear interactions [11], which can not be captured by
neither normal nor Frank copulas.

The paper [16] investigates the use of bivariate empirical copulas and a multivariate
extension of Archimedean copulas. The EDA based on bivariate empirical copulas uses
empirical margins, so this algorithm is completely non-parametric. Both the marginal dis-
tributions and the bivariate empirical copulas are de�ned through a linear interpolation of
the sample in the selected population. As the paper states, the construction based on bivari-
ate empirical copulas does not provide neither a proper multidimensional copula nor a joint
probability density function of the selected population. This issue constitutes a limitation
for studying the characteristics of the probabilistic model learned at each generation. The
EDA based on Archimedean copulas uses a construction, which is similar to a fully nested
Archimedean copula. This algorithm uses Frank, Clayton or Clayton survival copulas. The
parameters of the copulas are �xed to a constant value. The marginal distributions are
modeled as in the EDA based on bivariate empirical copulas.

Six instances of the algorithm based on Archimedean copulas and the EDA based on em-
pirical copulas are compared with UMDA for continuous domains, EMNA and the eigenspace
EDA (EDDA) [72] with 24 functions in 2, 5 and 10 dimensions. The six instances of the EDA
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based on Archimedean copulas correspond to two di�erent values of the copula parameters.
The algorithms use a population size of 1000 individuals for all functions and dimensions.
The results show that the EDAs based on copulas behave better than the other algorithms
on 20% of the functions.

The algorithm presented in [59] constitutes an extension to the continuous domain of
the EDA based on discrete dependency trees described in [5]. This EDA employs a depen-
dency tree along with bivariate copulas. The algorithm selects the copula that best �ts a
bivariate sample among six candidate copulas: Ali-Mikhail-Haq, Clayton, Farlie-Gumbel-
Morgenstern, Frank, normal and Gumbel. The authors also incorporate this copula selection
mechanism to the copula-based MIMIC proposed in [57]. The margins are modeled using
normal and normal kernel distributions. The strategy followed to learn the tree structure
is in the same spirit of that used in [57]. The goal is to select the dependency tree that
minimizes Kullback-Leibler divergence between the true unknown density and the estimated
density function. This aim is achieved by �nding the tree that results in the highest pair-
wise mutual information by means an algorithm that �nds a minimum spanning tree. The
parameters of the copulas are estimated by maximum likelihood and use the inversion of
Kendall's tau as an initial approximation. The selection of the copula for each pair of
variables is based on the highest value of the likelihood function.

The experimental studies compare two instances of each one of the algorithms MIMIC
and the dependency tree EDA, one with normal copulas and normal margins, and the other
with copula selection and normal kernel margins. The algorithms are compared on a bench-
mark of 7 functions in 4 and 12 dimensions. The population size is 10 times the dimension
of the problem for all algorithms and functions. The algorithms stop if the optimum of the
function is found, after 100000 function evaluations, or if the improvement of the �tness of
the best individual in the population is not greater than a threshold for 30 generations. The
discussion of the results of the experiments states that the algorithms based on copula have
better performance than the EDAs based on normal copulas on various functions, but it
was not illustrated why a certain dependence structure was more appropriate for a partic-
ular case. The paper concludes that the algorithms based on copula selection perform very
similar, but in our opinion the reasons for this behavior are the same as given above in the
case of the algorithms proposed in [57].

4.2.2 EDAs Based on Vines

Pair-copula constructions constitute an alternative to the multivariate copula approach.
These constructions, and speci�cally the graphical models known as vines, allow extending
bivariate copulas to higher dimensions and representing a rich variety of dependences by
combining bivariate copulas from di�erent families.

To the best of our knowledge, the use of vines in the context of EDAs begins with the
introduction of the class of Vine EDAs (VEDAs) [27, 28, 66, 67] and two speci�c members of
this class: CVEDA and DVEDA, based on C-vines and D-vines, respectively. The learning
procedure of CVEDA and DVEDA include two main steps: the selection of the structure of
the vines and the choice of the bivariate copulas in the factorization.

The selection of a speci�c pair-copula decomposition implies to choose an appropriate
order of the variables. To do so, greedy heuristics are used to detect the most important
bivariate dependences. The �rst step of the estimation procedure consist in assigning weights
to the edges and the absolute value of empirical Kendall's tau between pair of variables is
used with this purpose. The next step consist in determining the appropriate order of the
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variables of the decomposition, which depend on the type of pair-copula decomposition. In
a C-vine, the tree that maximizes the sum of the weights of the root node to the others is
chosen as the appropriate factorization. In a D-vine, the �rst tree is selected by maximizing
the weighted sequence of the variables through the cheapest insertion heuristic to compute
an approximate solution of the TSP (see [12, 55]). In both decompositions, the selection
of pair-copulas is accomplished through the Cramér von Mises statistics [26]. Firstly, the
product copula is considered [25]; if there is enough evidence against the null hypothesis
of independence, it is rejected and the bivariate copula that minimizes the Cramér von
Mises statistics is chosen. As the cost of the construction of C-vines and D-vines increases
rapidly with the number of variables, CVEDA and DVEDA use a truncation strategy [12]
in order to simplify these models. If a vine is truncated at a given tree, all the copulas in
the subsequent trees are assumed to be product copulas. A model selection procedure based
on either AIC [2] or BIC [61] is applied to detect the required number of trees.

The experimental studies with CVEDA and DVEDA assess the e�ect of combining dif-
ferent copulas, applying the truncation strategy, and selecting the structure of C-vines and
D-vines in the performance of VEDA. CVEDA and DVEDA are compared to UMDA and
GCEDA in the functions Sphere, Griewank, Ackley and Summation Cancellation in 10 di-
mensions. All the algorithms use normal margins and stop when the global optimum is
found or after 500000 function evaluations. The population size corresponds to the small-
est size that the algorithm requires to �nd the global optimum in 30 of 30 independent
runs. [53]. The bivariate copulas used by the vine-based algorithms are normal, t, Clayton,
Gumbel and the rotated versions of Clayton and Gumbel copulas.

CVEDA and DVEDA exhibit good performance in problems with both strong and weak
correlations between the variables: while UMDA uses the independence model and GCEDA
assumes a linear dependence structure, CVEDA and DVEDA do not assume the same type
of dependence across all pairs of variables. The estimation procedures used by the vine-based
algorithms select among a group of candidate bivariate copulas, the one that �ts the data
appropriately. CVEDA and DVEDA perform, in general, between UMDA and GCEDA in
terms of the number of function evaluations. It is also illustrated that the construction of the
vines up to an arbitrary number of trees may lead to a poor performance of the algorithm,
since the appropriate number of trees is tightly related to the characteristics of the problem.
The truncation methods based on AIC and BIC are more appropriate. Additionally, it
is shown that it is important to make a conscious selection of the dependences that are
explicitly modeled in the �rst tree of the vines.

The paper [58] also presents an EDA based on vines called D-vine EDA. In this algorithm,
only normal copulas are used in the �rst two trees and conditional independence is assumed
for the rest of the trees, i.e. the D-vine is always truncated at the second tree. Although the
paper states that for practical purposes it is not necessary to build the complete D-vine, it
was illustrated in [27, 66, 67] that an arbitrary selection of the number of trees in the vines
compromises the convergence of EDAs based on vines. The selection of the structure of the
D-vine is based on the minimization of the Kullback-Leibler divergence between the true
unknown density function and the density function estimated using the truncated D-vine
factorization. The algorithm used to simulate the truncated D-vine is similar to that used
in [57]. The marginal distributions are beta.

In the experimental section, D-vine EDA is compared to MIMIC and UMDA in three test
problems (Ackley, Rosenbrock and Sphere functions) in 10 dimensions. The same population
size of 300 individuals is used for all the algorithms in all the test problems. The algorithms
stop after 300000 evaluations or if the improvement of the �tness of the best individual in
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the population is not greater than a threshold for 25 generations. The algorithms obtain
similar results on Ackley and Sphere functions, although according to the results obtained
in [66, 69], UMDA should obtain the best performance on these functions.

4.2.3 EDAs Based on Nested Archimedean Copulas

The paper [78] proposes an EDA called LNAcopula-EDA that uses a representation of
hierarchically nested Archimedean copulas based on Lévy subordinators [35]. By using
Lévy subordinators, the probabilistic model is speci�ed through a division of the variables
into s groups and the selection of an outer s-dimensional Archimedean copula, an arbitrary
positive random variable V and s Lévy subordinators. In LNAcopula-EDA, the variables
are divided into s = 2 groups and the outer copula is a 2-dimensional Clayton copula with
parameter θ. The variable V is gamma with parameters 1/θ and 1, and the two Lévy
subordinators are gamma and inverse Gaussian processes. The marginal distributions are
modeled using either empirical or normal distributions.

Key aspects of the proposed algorithm are not clearly described in the paper. The
variables are divided into two groups according to the correlation between the variables but
the procedure followed for the selection of the groups is not described. At this point, it is
also important to stress out the the use of correlation as a measure of dependence in the
context of copulas presents several limitations (see e.g. [71]). Besides, no information is
given about the method used to estimate the parameter of the outer Clayton copula or if it
is assumed to be constant.

The behavior of the proposed algorithm is compared to the results presented in [57]
by using the same experimental set of functions. LNAcopula-EDA uses the same popula-
tion size of 100 individuals for all functions. The experiments show that LNAcopula-EDA
outperforms the other algorithms.

5 Summary and Conclusions

In recent years, a considerable number of papers that propose EDAs based on copulas have
appeared in the literature. Nevertheless, this is still a highly unexplored topic. There are
many aspects that should be considered in future research in order to achieve a deeper
understanding of mechanisms governing the behavior of these methods. It is important
to pay more attention to how the inherent features of each copula-based model a�ect the
optimization procedure. Regarding the experimental studies, in occasions the description of
the proposed EDAs lacks essential information to guarantee the reproducibility of the results.
It is also important to draw attention to the experimental design, since poor experimental
setups often result in misleading conclusions. Finally, it would be also bene�cial to have
more publicly available implementations of copula-based EDAs, since this would facilitate
performing numerical comparisons. To the best of our knowledge, the only publicly available
implementations of EDAs based on copulas are provided as part of the copulaedas package
[29, 30] for R [54].

13



References

[1] K. Aas, C. Czado, A. Frigessi, and H. Bakken. Pair-copula constructions of multiple
dependence. Insurance: Mathematics and Economics, 44(2):182�198, 2009.

[2] H. Akaike. A new look at statistical model identi�cation. IEEE Transactions on
Automatic Control, 19:716�723, 1974.

[3] R. J. Arderí. Algoritmo con estimación de distribuciones con cópula gaussiana. Bachelor
thesis, University of Havana, Cuba, June 2007.

[4] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press,
1996.

[5] S. Baluja and S. Davies. Using optimal dependency-trees for combinatorial optimiza-
tion: Learning the structure of the search space. In Proceedings of the Fourteenth
International Conference on Machine Learning, pages 30�38, 1997.

[6] S. Barba-Moreno. Una propuesta para algoritmos de estimación de distribución no
paramétricos. Master's thesis, Center for Research in Mathematics, Mexico, December
2007.

[7] T. Bedford and R. M. Cooke. Monte Carlo simulation of vine dependent random
variables forapplications in uncertainty analysis. In Proceedings of ESREL 2001, Turin,
Italy, 2001.

[8] T. Bedford and R. M. Cooke. Probability density decomposition for conditionally
dependent random variables modeled by vines. Annals of Mathematics and Arti�cial
Intelligence, 32(1):245�268, 2001.

[9] T. Bedford and R. M. Cooke. Vines � a new graphical model for dependent random
variables. The Annals of Statistics, 30(4):1031�1068, 2002.

[10] D. Berg and K. Aas. Models for construction of multivariate dependence. Note
SAMBA/23/07, Norwegian Computing Center, NR, Norway, June 2007.

[11] P. A. N. Bosman and D. Thierens. Numerical optimization with real-valued estimation
of distribution algorithms. In M. Pelikan, K. Sastry, and E. Cantú-Paz, editors, Scalable
Optimization via Probabilistic Modeling. From Algorithms to Applications, pages 91�
120. Springer-Verlag, 2006.

[12] E. C. Brechmann. Truncated and simpli�ed regular vines and their applications.
Diploma thesis, University of Technology, Munich, Germany, October 2010.

[13] C. Chang and L. Wang. A multi-population parallel estimation of distribution algo-
rithms based on Clayton and Gumbel copulas. In Proceedings of the Third International
Conference on Arti�cial Intelligence and Computational Intelligence (AICI 2011), Part
I, volume 7002 of Lecture Notes in Computer Science, pages 634�643. Springer-Verlag,
2011.

[14] A. Charpentier, J. D. Fermanian, and O. Scaillet. The estimation of copulas: Theory
and practice. In Copulas: From Theory to Application in Finance, pages 35�62. Risk
Books, 2007.

14



[15] B. Choro±, R. Ibragimov, and E. Permiakova. Copula estimation. In P. Jaworski,
F. Durante, W. K. Härdle, and T. Rychlik, editors, Copula Theory and Its Applications,
number 198 in Lecture Notes in Statistics, pages 77�93. Springer-Verlag, 2010. ISBN
978-3-642-12464-8.

[16] A. Cuesta-Infante, R. Santana, J. I. Hidalgo, C. Bielza, and P. Larrañaga. Bivariate
empirical and n-variate archimedean copulas in estimation of distribution algorithms.
In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2010), pages
1355�1362, July 2010.

[17] C. Czado. Pair-copula constructions of multivariate copulas. In P. Jaworski, F. Durante,
W. K. Härdle, and T. Rychlik, editors, Copula Theory and Its Applications, number
198 in Lecture Notes in Statistics, pages 94�111. Springer-Verlag, 2010. ISBN 978-3-
642-12464-8.

[18] J. S. De Bonet, C. L. Isbell, and P. Viola. MIMIC: Finding optima by estimating
probability densities. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in
Neural Information Processing Systems, volume 9, pages 424�430. The MIT Press,
1997.

[19] P. Deheuvels. La fonction de dépendance empirique et ses propriétés: Un test non
paramétrique d'indépendance. Bulletin de la Classe des Sciences, V. Série, Académie
Royale de Belgique, 65:274�292, 1979.

[20] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986. ISBN
0-387-96305-7.

[21] Y. Gao. Multivariate estimation of distribution algorithm with Laplace transform
archimedean copula. In W. Hu and X. Li, editors, Proceedings of the International
Conference on Information Engineering and Computer Science (ICIECS 2009), De-
cember 2009.

[22] Y. Gao, X. Hu, and H. Liu. Estimation of distribution algorithm based on multivari-
ate gaussian copulas. In Proceedings of the International Conference on Progress in
Informatics and Computing (PIC 2010), pages 254�257, December 2010.

[23] Y. Gao, X. Hu, H. Liu, F. Li, and L. Peng. Opposition-based learning estimation of
distribution algorithm with gaussian copulas and its application to placement of RFID
readers. In Proceedings of the Third International Conference on Arti�cial Intelligence
and Computational Intelligence (AICI 2011), Part I, volume 7002 of Lecture Notes in
Computer Science, pages 219�227. Springer-Verlag, 2011.

[24] C. Genest, K. Ghoudi, and L. P. Rivest. A semiparametric estimation procedure of
dependence parameters in multivariate families of distributions. Biometrika, 82:543�
552, 1995.

[25] C. Genest and B. Rémillard. Tests of independence or randomness based on the em-
pirical copula process. Test, 13(2):335�369, 2004.

[26] C. Genest and B. Rémillard. Validity of the parametric bootstrap for goodness-of-�t
testing in semiparametric models. Annales de l'Institut Henri Poincaré: Probabilités et
Statistiques, 44:1096�1127, 2008.

15



[27] Y. González-Fernández. Algoritmos con estimación de distribuciones basados en cópulas
y vines. Bachelor thesis, University of Havana, Cuba, June 2011.

[28] Y. González-Fernández, D. Carrera, M. Soto, and A. Ochoa. Vine estimation of
distribution algorithm. In VIII Congreso Español sobre Metaheurísticas, Algorit-
mos Evolutivos y Bioinspirados (MAEB 2012), February 2012. Available at http:

//congresomaeb2012.uclm.es/papers/paper_99.pdf.

[29] Y. González-Fernández and M. Soto. copulaedas: Estimation of Distribution Algo-
rithms Based on Copulas, 2011. R package version 1.1.0. Available at http://CRAN.
R-project.org/package=copulaedas.

[30] Y. González-Fernández and M. Soto. copulaedas: An R package for estimation of
distribution algorithms based on copulas. Submitted for publication, February 2012.
Preprint available at http://arxiv.org/abs/1209.5429.

[31] J. Grahl, P. A. N. Bosman, and F. Rothlauf. The correlation�triggered adaptive vari-
ance scaling IDEA. In Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO 2006), pages 397�404, 2006.

[32] X. Guo, L. Wang, J. Zeng, and X. Zhang. Copula estimation of distribution algo-
rithm with PMLE. In Proceedings of the Seventh International Conference on Natural
Computation (ICNC 2011), pages 1077�1081, 2011.

[33] W. Härdle, O. Okhrin, and Y. Okhrin. Modeling dependencies with copulae. In W. Här-
dle, N. Hautsch, and L. Overbeck, editors, Applied Quantitative Finance, pages 3�36.
Springer-Verlag, second edition, 2009.

[34] M. Hauschild and M. Pelikan. An introduction and survey of estimation of distribution
algorithms. Swarm and Evolutionary Computation, 1:111�128, 2011.

[35] C. Hering, M. Hofert, J.-F. Mai, and M. Scherer. Constructing hierarchical archimedean
copulas with Lévy subordinators. Journal of Multivariate Analysis, 101:1428�1433,
2010.

[36] I. Hobæk Ha�. Parameter estimation for pair-copula constructions. Note
SAMBA/36/10, Norwegian Computing Center, NR, October 2010.

[37] M. Hofert. Construction and sampling of nested archimedean copulas. In P. Jaworski,
F. Durante, W. K. Härdle, and T. Rychlik, editors, Copula Theory and Its Applications,
number 198 in Lecture Notes in Statistics, pages 94�111. Springer-Verlag, 2010. ISBN
978-3-642-12464-8.

[38] H. Joe. Families ofm-variate distributions with given margins andm(m−1)/2 bivariate
dependence parameters. In L. Rüschendorf, B. Schweizer, and M. D. Taylor, editors,
Distributions with �xed marginals and related topics, pages 120�141, 1996.

[39] H. Joe. Multivariate Models and Dependence Concepts. Chapman & Hall, 1997.

[40] H. Joe and J .J. Xu. The estimation method of inference functions for margins for
multivariate models. Technical Report 166, University of British Columbia, 1996.

16



[41] S. Kern, S. D. Müller, N. Hansen, D. Büche, J. Ocenasek, and P. Koumoutsakos. Learn-
ing probability distributions in continuous evolutionary algorithms � A comparative
review. Natural Computing, 3:77�112, 2003.

[42] D. Kurowicka and R. M. Cooke. Uncertainty Analysis with High Dimensional Depen-
dence Modelling. John Wiley & Sons, 2006. ISBN 978-0-470-86306-0.

[43] D. Kurowicka and R. M. Cooke. Sampling algorithms for generating joint uniform
distributions using the vine-copula method. Computational Statistics & Data Analysis,
51:2889�2906, 2007.

[44] P. Larrañaga. A review on estimation of distribution algorithms. In P. Larrañaga
and J. A. Lozano, editors, Estimation of Distribution Algorithms. A New Tool for
Evolutionary Computation, pages 57�100. Kluwer Academic Publisher, 2002.

[45] P. Larrañaga, R. Etxeberria, J. A. Lozano, and J. M. Peña. Optimization by learning
and simulation of Bayesian and Gaussian networks. Technical Report EHU-KZAA-IK-
4/99, University of the Basque Country, December 1999.

[46] P. Larrañaga, R. Etxeberria, J. A. Lozano, and J. M. Peña. Optimization in contin-
uous domains by learning and simulation of gaussian networks. In Proceedings of the
Workshop in Optimization by Building and Using Probabilistic Models in the Genetic
and Evolutionary Computation Conference (GECCO 2000), pages 201�204, 2000.

[47] P. Larrañaga, J. A. Lozano, and E. Bengoetxea. Estimation of distribution algorithms
based on multivariate normal and gaussian networks. Technical Report EHU-KZAA-
IK-1/01, University of the Basque Country, 2001.

[48] J. Madera, E. Alba, and A. Ochoa. Parallel estimation of distribution algorithms. In
E. Alba, editor, Parallel Metaheuristics: A New Class of Algorithms. John Wiley &
Sons, 2005.

[49] A. W. Marshall and J. Olkin. Families of multivariate distributions. Journal of the
American Statistical Association, 83:834�841, 1988.

[50] A. J. McNeil. Sampling nested archimedean copulas. Journal of Statistical Computation
and Simulation, 78(6):567�581, 2008.

[51] H. Mühlenbein and G. Paaÿ. From recombination of genes to the estimation of distri-
butions i. Binary parameters. In Parallel Problem Solving from Nature � PPSN IV,
pages 178�187. Springer-Verlag, 1996.

[52] R. B. Nelsen. An Introduction to Copulas. Springer-Verlag, second edition, 2006. ISBN
978-0387-28659-4.

[53] M. Pelikan. Hierarchical Bayesian Optimization Algorithm. Toward a New Generation
of Evolutionary Algorithms. Springer-Verlag, 2005.

[54] R Development Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN 3-900051-07-0.
http://www.R-project.org/.

17



[55] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II. An analysis of several heuristics
for the traveling salesman problem. SIAM Journal on Computing, 6(3):563�581, 1977.

[56] P. Rousseeuw and G. Molenberghs. Transformation of nonpositive semide�nite cor-
relation matrices. Communications in Statistics: Theory and Methods, 22:965�984,
1993.

[57] R. Salinas-Gutiérrez, A. Hernández-Aguirre, and E. Villa-Diharce. Using copulas in
estimation of distribution algorithms. In Proceedings of the Eight Mexican International
Conference on Arti�cial Intelligence (MICAI 2009), pages 658�668, November 2009.

[58] R. Salinas-Gutiérrez, A. Hernández-Aguirre, and E. Villa-Diharce. D-vine EDA: A
new estimation of distribution algorithm based on regular vines. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2010), pages 359�365,
July 2010.

[59] R. Salinas-Gutiérrez, A. Hernández-Aguirre, and E. Villa-Diharce. Dependence trees
with copula selection for continuous estimation of distribution algorithms. In Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO 2011), pages
585�592, July 2011.

[60] F. Schmid, R. Schmidt, T. Blumentritt, S. Gaiÿer, and M. Ruppert. Copula-based
measures of multivariate association. In P. Jaworski, F. Durante, W. K. Härdle, and
T. Rychlik, editors, Copula Theory and Its Applications, number 198 in Lecture Notes
in Statistics, pages 209�236. Springer-Verlag, 2010. ISBN 978-3-642-12464-8.

[61] G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461�464,
1978.

[62] M. Sebag and A. Ducoulombier. Extending population-based incremental learning to
continuous search spaces. In Parallel Problem Solving from Nature � PPSN V, pages
418�427. Springer-Verlag, September 1998.

[63] A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publications de
l'Institut de Statistique de l'Université de Paris, 8:229�231, 1959.

[64] A. Sklar. Random variables, joint distribution functions, and copulas. Kybernetica,
9:449�460, 1973.

[65] P. X. Song. Multivariate dispersion models generated from gaussian copula. Scandina-
vian Journal of Statistics, 27:305�320, 2000.

[66] M. Soto and Y. González-Fernández. Vine estimation of distribution algorithms. Tech-
nical Report ICIMAF 2010-561, Institute of Cybernetics, Mathematics and Physics,
Cuba, May 2010. ISSN 0138-8916.

[67] M. Soto, Y. González-Fernández, and A. Ochoa. Modeling with copulas and vines
in estimation of distribution algorithms. In preparation, 2012. Preprint available at
http://arxiv.org/abs/1210.5500.

[68] M. Soto, A. Ochoa, and R. J. Arderí. Gaussian copula estimation of distribution
algorithm. Technical Report ICIMAF 2007-406, Institute of Cybernetics, Mathematics
and Physics, Cuba, June 2007. ISSN 0138-8916.

18



[69] M. Soto, A. Ochoa, Y. González-Fernández, Y. Milanés, A. Álvarez, D. Carrera, and
E. Moreno. Vine estimation of distribution algorithms with application to molecular
docking. In S. Shakya and R. Santana, editors, Markov Networks in Evolutionary
Computation, volume 14 of Adaptation, Learning, and Optimization, pages 209�225.
Springer-Verlag, 2012. ISBN 978-3-642-28899-9.

[70] H. R. Tizhoosh. Opposition-based learning: A new scheme for machine intelligence.
In Proceedings of the International Conference on Computational Intelligence for Mod-
elling Control and Automation (CIMCA 2005), volume 1, pages 695�701, 2005.

[71] P. K. Trivedi and D. M. Zimmer. Copula modeling: An introduction for practitioners.
Foundations and Trends in Econometrics, 1:1�111, 2005.

[72] M. Wagner, A. Auger, and M. Schoenauer. EEDA: A new robust estimation of distri-
bution algorithm. Research Report RR-5190, INRIA, France, 2004.

[73] L. Wang, X. Guo, J. Zeng, and Y. Hong. Using Gumbel copula and empirical marginal
distribution in estimation of distribution algorithm. In Proceedings of the Third In-
ternational Workshop on Advanced Computational Intelligence (IWACI 2010), pages
583�587, August 2010.

[74] L. Wang, Y. Wang, J. Zeng, and Y. Hong. An estimation of distribution algorithm
based on Clayton copula and empirical margins. In K. Li, X. Li, S. Ma, and G. W.
Irwin, editors, Life System Modeling and Intelligent Computing, pages 82�88. Springer-
Verlag, 2010.

[75] L. Wang, J. Zeng, and Y. Hong. Estimation of distribution algorithm based on
archimedean copulas. In Proceedings of the �rst ACM/SIGEVO Summit on Genetic
and Evolutionary Computation (GEC 2009), pages 993�996, June 2009.

[76] L. Wang, J. Zeng, and Y. Hong. Estimation of distribution algorithm based on copula
theory. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2009),
pages 1057�1063, May 2009.

[77] L. Wang, J. Zeng, Y. Hong, and X. Guo. Copula estimation of distribution algo-
rithm sampling from Clayton copula. Journal of Computational Information Systems,
6(7):2431�2440, July 2010.

[78] B. Ye, H. Gao, X. Wang, and J. Zeng. Estimation of distribution algorithm based on
nested archimedean copulas constructed with Lévy subordinators. In Proceedings of the
Eleventh International Conference on Computer-Aided Industrial Design & Conceptual
Design (CAIDCD 2010), pages 1586�1590, November 2010.

19


